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Abstract
Weakly nonlinear interactions between wavepackets in a lossless periodic
dielectric medium are studied based on the classical Maxwell equations with a
cubic nonlinearity. We consider nonlinear processes such that: (i) the amplitude
of the wave component due to the nonlinearity does not exceed the amplitude
of its linear component; (ii) the spatial range of a probing wavepacket is
much smaller than the dimension of the medium sample, and it is not too
small compared with the dimension of the primitive cell. These nonlinear
processes are naturally described in terms of the cubic interaction phase function
based on the dispersion relations of the underlying linear periodic medium.
It turns out that only a few quadruplets of modes have significant nonlinear
interactions. They are singled out by a system of selection rules including
the group velocity, frequency and phase matching conditions. It turns out that
the intrinsic symmetries of the cubic interaction phase stemming from assumed
inversion symmetry of the dispersion relations play a significant role in the cubic
nonlinear interactions. We also study canonical forms of the cubic interaction
phase leading to a complete quantitative classification of all possible significant
cubic interactions. The classification is ultimately based on a universal system
of indices reflecting the intensity of nonlinear interactions.

1. Introduction

The effect of the spatial periodicity on nonlinear optical processes has been the subject of
intensive studies in the physical literature; see [18] for a recent review of the theory of nonlinear
photonic crystals, see also [1, 6, 7, 15] and references therein.

In this paper we consider photonic crystals (lossless dielectric periodic media) with cubic
nonlinearities based upon the approach developed in our preceding papers [6–9]. We study
weakly nonlinear phenomena satisfying the following basic conditions:

(i) the amplitude of the wave component due to the nonlinearity does not exceed the amplitude
of its linear component and

(ii) the wavepacket spatial range is much smaller than the dimension of the medium sample.

0959-7174/03/040041+29$30.00 © 2003 IOP Publishing Ltd Printed in the UK R41

http://stacks.iop.org/WRM/13/R41


R42 Topical Review

These phenomena can be naturally studied based on the underlying linear medium as a frame
of reference. Our study of the weakly nonlinear phenomena does not require small nonlinear
susceptibilities which can be whatever they happen to be. The term ‘weak’ rather refers to
appropriately small initial amplitudes of the electromagnetic (EM) wave. We consider general
periodic media in space dimensions d = 1, 2 and 3, we do not impose conditions on the
structure of the susceptibility tensors.

As in [6, 7] we assume that the EM wave propagation is described by the classical Maxwell
equations

∇ × E(r, t) = −1

c
∂tB(r, t) − 4π

c
JM(r, t), ∇ · B(r, t) = 0, (1)

∇ × H(r, t) = 1

c
∂tD(r, t) +

4π

c
JE(r, t), ∇ · D(r, t) = 0, (2)

where H , E, B and D are respectively, the magnetic and electric fields, the magnetic and
electric inductions, and JE and JM are impressed electric and, so-called, impressed magnetic
currents (current sources). It is also assumed that there are no free electric and magnetic
charges, and, consequently, the fields B and D are divergence free as indicated in equations (1)
and (2). Equations (1) and (2) readily imply that the impressed electric and magnetic currents
are also divergence free, i.e.

∇ · JE(r, t) = 0, ∇ · JM(r, t) = 0. (3)

We use the impressed currents primarily to generate wavepackets playing the key role in the
analysis of nonlinear phenomena. For simplicity we consider non-magnetic media, i.e.

B(r, t) = µH(r, t), µ = 1. (4)

The material relations between D and E are assumed to be of the standard form, [12]

D = E + 4πP (r, t; E) (5)

where the polarization P includes both the linear and the nonlinear parts

P (r, t; E(·)) = P (1)(r, t; E(·)) + PNL(r, t; E(·)). (6)

To quantify the relative impact of the nonlinearity we introduce a dimensionless constant α0

and scale all the fields as follows:

JE → α0JE, JM → α0JM, E → α0E, (7)

D → α0D, H → α0H, B → α0B. (8)

Then the magnitude of the rescaled nonlinearity P̃NL(Ẽ) with a cubic leading term is of order
α = α2

0 for α0 � 1, and the material relation becomes

D = E + 4π[P (1)(r, t; E(·)) + αPNL(r, t; E; α)], α = α2
0 � 1, (9)

where α measures the relative magnitude of the nonlinearity. We allow for PNL a general
analytic dependence in E with the leading term being cubic, namely

PNL(r, t; E) = P (3)(r, t; E) +
∞∑

h>3

P (h)(r, t; E; α), (10)

where P (h)(E) are h-linear (tensorial) operators. Observe, that, in view of (9), the leading term
P (3)(E) does not depend on α. For a cubic nonlinearity the nonlinear part PNL(r, t; E(·))
is often assumed to be homogeneous in E(·) of the order 3, that is higher order terms being
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neglected, [12, 13]. According to classical nonlinear optics, see [12] (section 2), P (h) has the
following form:

P (h)(r, t; E(·); α) =
∫ t

−∞
· · ·

∫ t

−∞
P(h)(r; t − t1, . . . , t − th; α)

...

h∏
j=1

E(r, t j ) dt j , (11)

where P(h) is the so-called h-order polarization response function. For fixed r and t − t j the
quantity P (h) is a h-linear tensor acting on the components of E(r, t j ). Here we do not make
assumptions on the structure of this tensor. This form of the polarization response function
given in (11) takes explicitly into account two fundamental properties of the medium: the time
invariance and the causality, [12, section 2].

The linear part P (1)(r, t; E(·)) of the total polarization is given by

P (1)(r, t; E(·)) = χ(1)(r)E(r, t), (12)

where χ(1)(r) is the tensor of linear susceptibility. For simplicity of rigorous argumentation
we assume that χ(1)(r) does not depend on the frequency that, from the physical point of
view, efficiently binds us to a certain frequency range. We would like to emphasize that this
simplifying assumption does not affect the analysis of nonlinear interactions since it takes as a
‘starting point’ the dispersion relations of the linear medium, whatever they happen to be [6].

It is preferable to deal with divergence-free fields, [6], and for that reason we choose D

to be our basic field. To implement that we recast (9) as

E(r, t) = η(1)(r)D(r, t) − αS(r, t; D; α), (13)

η(1)(r) = [ε(1)(r)]−1, ε(1)(r) = 1 + 4πχ(1)(r), (14)

where ε(1)(r) and η(1)(r) are respectively, tensors of the dielectric permittivity and the
impermeability. The latter is commonly used in studies of electro-optical effects (Pockels
and Kerr effects), [20, section 7], [17, sections 6.3, 18.1].

The dielectric properties of the periodic medium are assumed to vary periodically in space.
In other words, the tensors χ(1)(r), η(1)(r) and PNL(r, t; E; α), S(r, t; D; α) are periodic
functions of the position r. In particular, if the lattice of periods is cubic with lattice constant
L0, and Z

3 is the lattice of integer valued vectors n, then the following periodicity conditions
hold for every n from Z3:

η(1)(r + L0n) = η(1)(r), P(h)(r + L0n; t1, . . . , th; α) = P(h)(r; t1, . . . , th; α). (15)

The case of a non-cubic lattice with different periods L j in different directions can be considered
similarly; we restrict ourselves to the cubic case for simplicity. Substituting E determined
by (13) into the Maxwell equations (1), (2), we rewrite them in the following concise form:

∂tU = −iMU + αFNL(U) − J; U(t) = 0 for t � 0, (16)

where

U =
[

D
B

]
, MU = i

[ ∇ × B
−∇ × (η(1)(r)D)

]
, (17)

J = 4π

[
JE

JM

]
, FNL(U) =

[
0

∇ × S(r, t; D)

]
, (18)

assuming everywhere that all the fields D, B, JE and JM are divergence free. We also assume
that the medium is at rest for all negative times by requiring the impressed currents J vanish
for all negative times, i.e.

J(t) = 0 for t � 0. (19)
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As it is shown in [6, 7], a number of nonlinear phenomena of interest are described in
terms of the dispersion relations of the underlying linear medium represented by the linear
Maxwell operator M with periodic coefficients. The spectral properties of M, in turn, are
based on the Floquet–Bloch theory, [5, 16]. Namely, we remind that all the eigenvalues and
the eigenmodes of M are parametrized by two indices: zone (band) number n = 1, 2, . . ., and
the quasimomentum k from the so-called Brillouin zone. The Brillouin zone in our case is the
cube [−π, π]d . We assume that the positive eigenvalues ωn(k) are ordered as follows:

0 � ω1(k) � ω2(k) � · · · , k in [−π, π]d, (20)

where d = 1, 2, 3 is the space dimension. We call k a simple point of nth dispersion relation
ωn(k) when ωn(k) �= ωn+1(k), ωn(k) �= ωn−1(k). If ωn(k) = ωn+1(k) we call k a multiple
(or band-crossing) point of ωn(k) and ωn+1(k). Note that the operator M has the following
property: if ω is an eigenfrequency then −ω is an eigenfrequency as well. To take into account
the negative eigenfrequency we introduce the pairs

n̄ = (ζ, n) where ζ = ±1, n = 1, 2, . . . , (21)

and set

ωn̄(k) = ζωn(k), for n̄ = (ζ, n). (22)

The functions ωn(k) are 2π periodic functions of k1, k2, k3. Recall that for the classical
Maxwell equations the corresponding Bloch eigenmodes G̃n̄(r,k) satisfy the following
relations:

MG̃n̄(r,k) = ωn̄(k)G̃n̄(r,k), G̃n̄(r + m,k) = eik·mG̃n̄(r,k), m in Z
d , (23)

G̃n̄(r,k) being divergence free. For every fixed quasimomentum k the eigenfunctions G̃n̄(k)

with different n̄ form an orthonormal basis.
Commonly cubic nonlinearities arise in a central symmetric bulk medium with relevant

properties being invariant with respect to the central symmetry reflection S0: r → −r.
Because of fundamental symmetry constraints at the microscopic level most of the dielectric
materials possessing cubic nonlinearities are also symmetric with respect to the inversion
transformation k ↔ −k. So, within this paper we always assume the following inversion
symmetry condition to hold:

ωn(k) = ωn(−k) for all n = 1, 2, . . . and k ∈ [−π, π]d, (24)

which is a special case of Wigner time-reversal symmetry; see [14]. Note that this relation
implies the following equality for the gradients ω′

n(k) = ∇ωn(k) (the group velocities):

ω′
n(k) = −ω′

n(−k). (25)

The inversion symmetry condition (24) plays a very important role in cubic nonlinear
interactions (see, for comparison, [10] for the analysis of nonlinear interactions when the
inversion symmetry does not apply). In this paper we study the effects related only to the
inversion symmetry with the understanding that other symmetries can be treated within the
same framework as it is discussed in section 3.4. It is assumed that after taking all the
symmetries into account the dielectric medium is a ‘generic’ one. A more precise meaning of
the term generic is provided in section 2.

Mode interactions analysis is naturally based on the Floquet–Bloch modal expansions for
every field U(r) of interest, i.e.

U(r) = 1

(2π)d

∑
n̄

∫
[−π,π ]d

Ũn̄(k)G̃n̄(r,k) dk, (26)
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Figure 1. Impressed current J in the form of the wavepacket of the amplitude of order � and
of time length of order 1/� causes the medium nonlinear response. Based on this response we
estimate the rates of energy exchange between different modes.

(This figure is in colour only in the electronic version)

with Ũn̄(k) being the scalar Bloch amplitudes of U(r), and G̃n̄(k) being eigenmodes
(generalized eigenfunctions) of the linear Maxwell operator M. As we have shown in [6]
and [7], the substantial part of the nonlinear mode interaction analysis can be carried out based
upon the dispersion relations ωn(k) of the interacting modes and the very general smoothness
properties of the eigenmodes G̃n̄(k).

2. Cubic nonlinear interactions

Though the cubic nonlinear interactions are described essentially by the same formalism as
quadratic ones, [6, 7], there are some important differences extending beyond the evident
difference of the number of interacting modes, which are respectively four and three for cubic
and quadratic nonlinearities. The qualitative difference stems from the inversion symmetry
condition (24) implying consequently related symmetries of the cubic interactions phase. In
contrast, the inversion symmetry condition (24) does not affect the quadratic interactions to
such a degree. It also turns out, as a consequence of the mentioned symmetries of the cubic
interaction phase, that one can explicitly identify quadruplets of modes satisfying the group
velocity matching (GVM) condition which is crucial for stronger mode interactions, [7].

In the following sections we focus on those details of the formalism of [6, 7] that are
special for cubic nonlinearities.

2.1. First nonlinear response and interacting quadruplets of modes

For the clarity of the argument we assume the photonic crystal occupies the entire space. As
in [6, 7] we probe the dielectric medium with the excitation current J of sufficiently small
amplitude α0 and of the relative bandwidth � ∼ �ω/ω0, where �ω is the frequency bandwidth
of the wavepacket and ω0 is its carrier frequency (see figure 1).

We choose the excitation currents J to be wavepackets with modal coefficients of the form

Jn̄(k, t) = �e−iωn̄(k)t
n̄ jn̄(k, τ )G̃n̄(k), jn̄(k, τ ) = 0 for τ = �t � 0, (27)

where τ is the so-called ‘slow time’, ρ � 1. Note that if α = 0 equation (16) evidently becomes
linear. If the excitation current J is chosen as an appropriate wavepacket, the solution U (0)

to the linear (with α = 0) Maxwell equations becomes the zero-order approximation to the
solution of the nonlinear Maxwell equation (16), [6]. Its modal components can be represented
as

U
(0)
n̄ (t) = Ṽ (0)

n̄ (k, τ )Gn̄(r,k)e−iωn̄ (k)t , τ = �t, (28)

where Ṽ (0)
n̄ (k, τ ) are slowly varying time amplitudes of the time harmonic carrier waves
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Gn̄(k)e−iωn̄ (k)t . The amplitudes are explicitly expressed in terms of J :

Ṽ (0)
n̄ (k, τ ) = −

∫ τ

0
jn̄(k, τ1) dτ1. (29)

We study and classify cubic mode interactions based on the first nonlinear response U (1)(t)
defined by

U(t) = U (0)(t) + αU (1)(t) + O(α2). (30)

Its Bloch expansion has the form, [6, 7]

U
(1)
n̄ (t) = Ṽ (1)

n̄ (k, τ )Gn̄(k)e−iωn̄(k)t , τ = �t, (31)

Ṽ (1)
n̄ (k, τ ) = 1

�

∑
n̄′,n̄′′

∫ τ

0

∫
[−π,π ]d

exp

{
iφ
n(k,k′,k′′)

τ1

�

}
Q̆ 
n(k,k′,k′′)Ṽ (0)

n̄′ (k′, τ1)

× Ṽ (0)

n̄′′ (k′′, τ1)Ṽ (0)

n̄′′′ (k − k′ − k′′, τ1) dk′ dk′′ dτ1, (32)

with the mode interaction phase function (interaction phase)

φ
n(k,k′,k′′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k′′) − ωn̄′′′(k − k′ − k′′), (33)

where ωn̄(k) are given by (22), Q̆ 
n is a coefficient depending on the indices 
n = (n̄, n̄′, n̄′′, n̄′′′)
and the quasimomenta k,k′,k′′, and φ
n is 2π-periodic with respect to the k,k′,k′′ phase
function (see [6] for the reduction to this form). Observe that the form of the interaction
phase φ
n(k,k′,k′′) indicates that for a cubic nonlinearity the modes interact in quadruplets.
Formula (32) suggests that the integral

I
n(k, τ ) = 1

�

∫ τ

0

∫
[−π,π ]3

exp

{
φ
n(k,k′,k′′)

τ1

�

}
A(k,k′,k′′, τ1) dk′ dk′′ dτ1, (34)

A(k,k′,k′′, τ1) = Q̃ 
n(k̃)Ṽ (0)
n̄′ (k′, τ1)Ṽ (0)

n̄′′ (k′′, τ1)Ṽ (0)
n̄′′′ (k − k′ − k′′, τ1), (35)

represents the nonlinear impact of all triads of modes (n̄′,k′), (n̄′′,k′′), (n̄′′′,k′′′) onto the mode
(n̄,k). We refer to the integrals (34) as the nonlinear oscillatory interaction integrals, whereas
the interaction process is often referred to as four-wave mixing. We would like to emphasize
that since the propagating wavepacket always has a finite spatial range, its spectrum consists
of a continuum of modes, and all of them are involved in the four-wave mixing. But as it is
shown in [6] for quadratic interactions and will be shown here for cubic interactions, almost all
interactions, except for a few stronger ones, are insignificant and vanish faster than any power
of � as � → 0. This fact reduces the asymptotic approximation of the integral I
n(k, τ ) to a
finite sum of contributions coming from a few stronger interacting quadruplets of modes.

As in the preceding papers we classify the nonlinear interaction based on the rate of
decay of the oscillatory interaction integrals (32) as � → 0. The asymptotic behaviour
of Ṽ (1)

n̄ (k, τ ) in (32) as � → 0 is determined primarily by the interaction phase φ
n .
Its form (33) signifies the well known fact that the nonlinear interactions for a cubic
nonlinearity occur through quadruplets of modes (n̄,k), (n̄′,k′), (n̄′′,k′′) and (n̄′′′,k′′′)
with the corresponding dispersion relations ωn̄(k), ωn̄′(k′), ωn̄′′(k′′) and ωn̄′′′(k′′′). The
representation (32), (33) explicitly takes into account the phase matching condition

k′′′ = k − k′ − k′′ (36)

for the interacting modes that follow from the medium periodicity. The periodicity of ωn̄(k)

implies that this equation is understood modulo (2πZ)d ; see the remark at the end of the
following section for details.

To analyse the interactions, we look at the impact of a triad of modes (n̄′,k′), (n̄′′,k′′)
and (n̄′′′,k − k′ − k′′) onto a mode (n̄,k), and observe that the amplitude of the first
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nonlinear response Ṽ (1)
n̄ (k, τ ) depends on the amplitudes Ṽ (0)

n̄′ (k′, τ1), Ṽ (0)

n̄′′ (k′′, τ1) and
Ṽ (0)

n̄′′′ (k − k′ − k′′, τ1), τ1 � τ , of the linear response. Let us fix τ > 0, and denote the
contribution of amplitudes Ṽ (0)

n̄′ (k′), Ṽ (0)

n̄′′ (k′′) and Ṽ (0)

n̄′′′ (k − k′ − k′′) to the amplitude Ṽ (1)
n̄ (k)

by Ṽ (1)
n̄ (n̄, n̄′, n̄′′, n̄′′′,k′′,k′,k). Using the same arguments as given in [6, 7] we show that for

� → 0 the first nonlinear response Ṽ (1)
n̄ always vanishes as a power of �, namely

Ṽ (1)
n̄ (n̄, n̄′, n̄′′, n̄′′′,k′′,k′,k) ∼ �q0−1, � → 0 where 0 < q0 � ∞, (37)

where the index q0 = q0(n̄, n̄′, n̄′′, n̄′′′,k′′,k′,k) describes the intensity of the interaction. If,
for instance, the modes (n̄,k), (n̄′,k′), (n̄′′,k′′) and (n̄′′′,k′′′) are chosen ‘at random’ then the
above index q0 is infinite and, consequently, the mode interaction is weaker than any power of
� as � → 0.

The strongly interacting modes for which q0 is finite (in fact, for such modes q0 � d , with
d being the space dimension) are determined by the system of selection rules following from
the asymptotic analysis of the oscillatory integral (34).

2.2. The system of selection rules

To single out and classify significant nonlinear interactions one has to study the asymptotic
behaviour of the integral (34) as � → 0. An analysis of the interaction integrals I
n(k,τ ) of the
form (34) along the lines of [6] shows that stronger nonlinear interactions can be found with
the help of three selection rules. The first one, known as the phase matching condition (36), is
already built in the very form of the interaction integral I
n(k, τ ) where k′′′ = k−k′ −k′′. The
second and the third selection rules, respectively, the GVM rule and the frequency matching
(FM) rule, are as follows:

∇ωn̄′(k′
∗) = ∇ωn̄′′(k′′) = ∇ωn̄′′′(k′′′), k′′′ = k − k′

∗ − k′′
∗, (38)

ωn̄(k) − ωn̄′(k′) − ωn̄′′(k′′) − ωn̄′′′(k − k′ − k′′) = 0. (39)

Observe that the GVM condition (38) is the system of two d-component equations, and the
FM condition (39) is a scalar equation. Evidently, for a fixed vector k the system (38), (39)
consists of 2d + 1 scalar equations for the total of the 2d variables which are components of
the vectors k′ and k′′. Consequently the system is formally overdetermined. Though, thanks
to the special structure of the system (38), (39) and the inversion symmetry condition (24), the
selection rules system (38), (39) always has solutions.

As we have already pointed out in [7] the GVM rule is the most important selection rule.
Its significance follows from for the fact that if the group velocity condition (38) does not hold,
the corresponding mode interaction is very weak, namely the interaction integrals

I
n(k) = 1

�

∫
[−π,π ]d

exp

{
iφ
n(k,k′,k′′)

τ1

�

}
A(k,k′,k′′, τ1) dk′ dk′′ (40)

included in (34) vanish faster than any power of � as � → 0. In contrast, if (38) holds, the
integral I
n(k) in (40) is of order �q0−1 where q0 is a finite number determined by the properties
of the phase function φ
n at a relevant point, [6]. It turns out that for most of the stronger
interacting quadruplets we have q0 = d . It is shown in [6] that when the GVM condition holds
and the FM condition (39) does not, the magnitude of the interaction integral I
n(k, τ ) is of
order �q0 with a finite q0, whereas in the case when both the group velocity (38) and the FM (39)
conditions hold it is of order �q0−1. There are special quadruplets with corresponding indices
q0 < d , these are the most strongly interacting quadruplets. It turns out that the index q0 takes
on only a few universal values, the most important of them are collected in the tables presented
in section 2. Note that a smaller interaction index q0 corresponds to a stronger interaction.
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In this paper we consider only the strongest possible cubic interactions satisfying the full
system of selection rules (38), (39). The cases when the system (38), (39) is not fully satisfied
essentially are considered in [6].

Now let us briefly recall the origin of the system of the selection rules. We want to single
out those points (k′∗,k′′∗) which provide the most significant contributions to the interaction
integral I
n(k, τ ) as � → 0. As it follows from the stationary phase method, for any fixed
k and 
n, the most significant contributions come from the so-called critical points (k′∗,k′′∗)
solving the following two d-component equations:

∇k′φ
n(k,k′
∗,k′′

∗) = 0, ∇k′′φ
n(k,k′
∗,k′′

∗) = 0. (41)

In view of (33), equations (41) can be recast as (38), that is critical points of the phase are the
points for which the GVM rule holds. The FM condition (39) is derived from the analysis of
the integral with respect to τ in (34) (see [6]).

2.2.1. Cubic interaction phase function and its symmetries. When applying the selection
rules (38), (39) one has to take into account the intrinsic symmetries of the cubic interaction
phase function φ
n(k,k′,k′′) as defined by (33) with respect to the transformations

(n′,k′) ↔ (n′′,k′′), (n′,k′) ↔ (n′′′,k′′′) and

k′ ↔ −k′, k′′ ↔ −k′′, k′′′ ↔ −k′′′.
(42)

We study the properties of the interaction phase φ
n(k,k′,k′′) under the assumption that all
the dispersion relations ωn(k) are generic in the sense that they do not have any ‘hidden
symmetries’, and that all their degeneracies are robust. The concept ‘of being generic’ can be
described more ‘constructively’ based on admissible perturbations of ωn(k) which are assumed
to satisfy the following properties.

Admissible perturbations. For any set of functions ωn(k), n = 1, 2, . . ., satisfying the
inversion symmetry relation (24), the corresponding set of perturbations δωn(k), n = 1, 2, . . .,
are called admissible if: (i) all δωn(k) satisfy the inversion symmetry relation (24); (ii) all
functions δωn(k) are infinitely differentiable in k.

Note that for admissible perturbations the values of δωn′(k′) and δωn′′(k′′) are independent
in the vicinity of any two simple (that is, not band-crossing) points k′∗, k′′∗ if n′ �= n′′ or if
n′ = n′′ and k′∗ �= ±k′′∗ .

If the dimension d > 1 the dispersion relations may have symmetries additional to (24).
If the dispersion relations ωn(k) possess additional symmetries the admissible perturbations
are supposed to have the symmetries too. Namely, if a finite group G = {γ1, . . . , γκ}
of transformations of the quasimomenta space R

d leaves the dispersion relation invariant,
i.e. ωn(γk) = ωn(k) for all γ from G, then the admissible perturbations must be invariant
with respect to G, i.e. δωn(γk) = δωn(k) for all γ from G. In this case the values of δωn′(k′)
and δωn′′(k′′) are independent in the vicinity of any two simple (that is not band-crossing)
points k′∗, k′′∗ if n′ �= n′′ or if n′ = n′′ and k′∗ �= γk′′∗ for all possible γ from G.

Robust singularity of the interaction phase function. We consider the interaction phase
φ
n(k,k′,k′′) defined by (33) as a function of (k′,k′′) that depends on the parameter k. For
a fixed 
n a singularity of φ
n(k,k′,k′′) at a critical point (k′∗,k′′∗) satisfying (38), (39) with
k = k∗, is called robust if it persists (as a solution of (38), (39) and as a singularity, may
be with different (k∗,k′∗,k′′∗)) under all sufficiently small admissible perturbations of ωn(k),
ωn′(k′), ωn′′(k′′), ωn′′′(k′′′).
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Generic interaction phase function. The interaction phase φ
n(k,k′,k′′) defined by (33) is
said to be generic if it has only robust singularities at all its regular critical points (k′∗,k′′∗).

In other words, all possible degeneracies of φ
n(k,k′,k′′), which can be removed by
an arbitrary small smooth, symmetry respecting perturbation of the dispersion relations, are
assumed to be removed.

Analysing patterns of singular behaviour of the interaction phase φ
n(k,k′,k′′) at critical
points (41) we have singled out the following classes of important points 
n and k,k′,k′′, and,
hence, corresponding quadruplets of interacting modes.

Diagonal quadruplets of modes (points). We have to consider separately the cases when
some of the numbers n′, n′′ and n′′′ are equal and consequently some of the corresponding
functions ωn̄(k), ωn̄′(k′), ωn̄′′(k′′), ωn̄′′′(k − k′ − k′′) in (33) are not independent. Such cases
may arise only when n′ = n′′ or n′ = n′′′, or n′′ = n′′′. We call a quadruplet of modes positive
diagonal if at least one of the following relations is satisfied:

{n′ = n′′, k′ = k′′} or {n′ = n′′′, k′ = k′′′} or {n′′ = n′′′, k′′ = k′′′}.
(43)

Similarly, we call a quadruplet of modes negative diagonal if at least one of the following
relations is satisfied:

{n′ = n′′, k′ = −k′′} or {n′ = n′′′,k′ = −k′′′} or {n′′ = n′′′,k′′ = −k′′′}.
(44)

If a quadruplet (point) is neither positive diagonal nor negative diagonal we will refer to it as
a non-diagonal one.

Remark. Since the functions ωn̄(k) are 2π periodic, the equalities in (43), (44) and (36) are
understood modulo (2πZ)d ; see the remark at the end of section 3.4 for more details.

Remark. If the dispersion relations have an additional symmetry, for example, they are
invariant under the action of a group G, they can be treated similarly to the above. The
analysis must take into account which points the functions ωn(k) are independent. To this end
the definition of a diagonal point should be modified in the following way. A quadruplet is
called diagonal with respect to a group G = {γ1, . . . , γκ} of transformations γ (G-diagonal),
if there exists such γ in G that

{n′ = n′′,k′ = γk′′} or {n′ = n′′′,k′ = γk′′′} or {n′′ = n′′′,k′′ = γk′′′}.
(45)

The group G is assumed to contain the group G0 = {1,−1} corresponding to the inversion
symmetry (24). Evidently, (45) turns into (43), (44) if G = G0. In this paper we consider in
detail only the case G = G0 and for larger groups G see section 3.4.

Our analysis of stronger cubic interactions singles out a special case of diagonal
quadruplets of modes when for a given k a quadruplet of modes satisfies

n′ = n′′ = n′′′ = n. (46)

In other words, the most strongly interacting quadruplets of modes satisfying the systems of
selection rules (38), (39) belong to the same band. The quasimomenta k, k′, k′′, k′′′ and the
signs ζ in the index n̄ = (ζ, n) of ωn̄(k) for the strongly interacting modes satisfy (46) and
one of the following systems of equations:

{k′′′ = −k,k′ = k′′ = k, ζ3 = −ζ0, ζ1 = ζ2 = ζ0}, (47)
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Table 1. Indices of interaction at non-diagonal GVM–FM points of indicated type.

Type of critical point

Space dimension d A1 A2 A3

1 q0 = 1, dc = 0 None None
2 q0 = 2, dc = 1 q0 = 11

6 , dc = 0 None

3 q0 = 3, dc = 2 q0 = 17
6 , dc = 1 q0 = 11

4 , dc = 0

Table 2. Indices of interaction at positive diagonal GVM–FM points of indicated type.

Type of critical point

Space dimension d A1 A2 A3 A5 D4

1 q0 = 1 None None None None
dc = 0

2 q0 = 2 q0 = 11
6 q0 = 7

4 None q0 = 5
3

dc = 1 dc = 0 dc = 0 dc = 0

3 q0 = 3 q0 = 17
6 q0 = 11

4 q0 = 8
3 q0 = 8

3
dc = 2 dc = 1 dc = 1 dc = 0 dc = 0

or

{k′ = −k,k′′ = k′′′ = k, ζ2 = ζ3 = ζ0, ζ1 = −ζ0}, (48)

or

{k′′ = −k,k′ = k′′′ = k, ζ2 = −ζ0, ζ0 = ζ1 = ζ3}. (49)

Note, for instance, that if ζ are chosen as in (47) the interaction phase function (33) takes the
form

φ
n(k,k′,k′′) = ±[−ωn(k) + ωn(k
′) + ωn(k

′′) − ωn(k − k′ − k′′)]. (50)

Quadruplets of modes satisfying the relation (46) and one of the relations (47)–(49) are
examples of what we call double diagonal quadruplets of modes (see the following section 2
for details).

The minimal values of the index q0 = q0(n̄, n̄′, n̄′′, n̄′′′,k′′,k′,k) corresponding to the
strongest interactions among all possible interacting quadruplets in a generic case occur exactly
for the special, double diagonal quadruplets determined by (46), (47) or (46), (48) or (46), (49)
(see tables 1–5 and corresponding sections of section 3 for details). In nonlinear optics this
type of interactions is known to occur in the process of degenerate four-wave mixing, [12,
p 232].

Remark. Note that for given (n̄,k) the selection rules (38) and (39) impose 2d + 1 equations
on 2d variables k ′, k ′′, and the fact that the system (38) and (39) (in contrast to the case of
a quadratic nonlinearity; see [6]) always has a solution is due to the special structure of the
function φ
n(k,k′,k′′) defined (50) or a similar representation for the cases (48) and (49).

Remark. Note that in (47) the {k′′′ = −k, ζ ′′′ = −ζ } values correspond to the eigenmode
(−k,−ζ ) which is complex conjugate to (k, ζ ) = (k′, ζ ′) = (k′′, ζ ′′), and, since the relevant
field is real valued, the corresponding mode amplitudes are also complex conjugate. This
observation allows one to interpret the relations (46) and (47)–(49) as indicating that the self-
interaction of a mode is among the strongest. It turns out that the described interaction is
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Table 3. Indices of interaction at negative-diagonal GVM–FM points of indicated type.

Type of critical point

Space dimension d A1 A2 A3 A4 D4

1 q0 = 1 None None None None
dc = 0

2 q0 = 2 q0 = 11
6 q0 = 7

4 None q0 = 5
3

dc = 1 dc = 0 dc = 0 None dc = 1
3 q0 = 3 q0 = 17

6 q0 = 11
4 q0 = 27

10 q0 = 8
3

dc = 2 dc = 2 dc = 1 dc = 0 dc = 1

Table 4. Indices of interaction at double positive diagonal GVM–FM points of indicated type.

Type of critical point

Space dimension d A1 D4 Ỹ5

1 q0 = 1, dc = 0 None None

2 q0 = 2, dc = 1 q0 = 5
3 , dc = 0 None

3 q0 = 3, dc = 2 q0 = 8
3 , dc = 1 q0 = 5

2 , dc = 0

Table 5. Indices of interaction of double negative or mixed diagonal GVM–FM points of a given
type.

Type of critical point

Space dimension d A1 D4 T2,4,4 N16 4-cubic

1 q0 = 1 q0 = 2
3 None None None

dc = 1 dc = 0

2 q0 = 2 q0 = 5
3 q0 = 5

2 None None
dc = 2 dc = 1 dc = 0

3 q0 = 3 q0 = 8
3 q0 = 5

2 q0 = 12
5 q0 = 7

3
dc = 3 dc = 2 dc = 1 dc = 0 dc = 0

intimately related to the nonlinear Schrödinger equation, a subject we intend to discuss in a
subsequent paper.

It turns out the optical Kerr effect falls into the above framework. Indeed, the optical Kerr
effect [12, p 26] involves a quadruplet of interacting modes with frequencies −ωS, ωP, −ωP,
ωS. Let us consider a periodic medium with inversion symmetry satisfying

ωS = ωn(k) = ωn′(k′), ωP = ωn′(k′′) = ωn′′′(k − k′ − k′′), (51)

n′′′ = n′′, n = n′, k = k′, k′′′ = −k′′, ζ0 = ζ1 = ζ2 = −ζ3. (52)

A direct examination shows that the relations (52) imply that the selection rule system (38)
and (39) is satisfied.

We conclude this section by reminding that in this paper we consider only interactions
satisfying the full system of selection rules (38) and (39), since analysis shows that all other
interactions are weaker.
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3. Classification of the critical points of the interaction phase function

In this section we provide a concise description of the results of a thorough asymptotic analysis
of the cubic interaction integrals (32), (34) as� → 0 which serves as a basis for the classification
of the strength of cubic nonlinear mode interactions. The asymptotic analysis, in turn, rests
on the stationary phase method with the phase being the cubic interaction phase φ
n(k,k′,k′′)
defined by (33). In particular, we study here the properties of the selection rules system (38),
(39) crucial to the asymptotic analysis.

3.1. Stationary phase method

The interaction integrals (32), (34) are oscillatory integrals with slowly varying amplitude A.
To analyse their asymptotic behaviour as � → 0 we look at a more general oscillatory integral

I (�,k) =
∫

R
dI

ei�(k,s)/� A(k, s) ds, s = (k′,k′′), � → 0, (53)

where the integration variable s has dimension dI , and k is a continuous parameter. Hence,
generally speaking, we may view �(k, s) as a d-parametric family of phase functions of s.
Obviously, (34) has the form of (53) where the integration vector-variable s = (k′,k′′) has
the dimension dI = 2d . The phase function �(k, s) in the case of interest is the interaction
phase function φ
n defined by (33), i.e.

�(k, s) = φ
n(k,k′,k′′), s = (k′,k′′), (54)

where

φ
n(k,k′,k′′) = ζ0ωn(k) − ζ1ωn′(k′) − ζ2ωn′′(k′′) − ζ3ωn′′′(k′′′),
k′′′ = k − k′ − k′′, ζi = ±1.

(55)

Note that the integral (34) has the factor �−1 which is not included in the integral (53).
Let us recall and review briefly the main concepts of the stationary phase method for

oscillatory integrals of the form

I (�) =
∫

RdI

ei�(s)/� A(s) ds, � → 0, (56)

where A(s) is assumed to be an infinitely smooth function with a finite support. According to
the stationary phase method, the main contribution to I (�) as � → 0 (up to �N with arbitrary
large N) comes from small neighbourhoods of critical points of the phase �(s), that is the
points s∗ satisfying the equation

∇s�(s) = 0. (57)

Observe that (57) implies the GVM rule (38) for � = φ
n . Since (57) is a system of dI equations
for dI variables, for a generic �(s) there is a finite number of such points. The integral over
a small neighbourhood of a critical point s∗ expands into an asymptotic series in powers of
�. The coefficients before the powers are written in terms of the values of �(s), A(s) and
their derivatives at the critical points s∗. The most important is the matrix of the second-order
derivatives, the so-called Hessian, defined by

�′′(s∗) =
{

∂2�(s∗)
∂si ∂s j

}dI

i, j=1

. (58)

The simplest case is the so-called non-degenerate one when det �′′(s∗) �= 0. In the non-
degenerate case the integral (56) is of order �dI /2 and its asymptotics are given by the classical
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formula; see the following section ‘standard asymptotic approximations’ (for more detail
see [19]).

If the phase is degenerate and det �′′(s∗) = 0 the integral (56) is significantly larger for
small �. More exactly, it is of order �q with q > dI /2 = d .

The condition of being generic. We study here only ‘generic’ interaction phase functions
�(s) that have a specific structure (54) with ‘robust’ degeneracies, with the terms ‘generic’
and ‘robust’ being explained in the previous section 2.2.1. In other words, we always assume
that all possible degeneracies that can be removed by an arbitrary small admissible smooth
perturbation of �(s) are removed and, consequently, we study only the critical points having
robust singularities. For example, if �(s) is a generic phase function, then (54) has a finite
number of solutions and det �′′(s∗) �= 0 at every critical point. Note though that one has to
be cautious with generic functions depending on a parameter. For instance, when �(k, s)

is a generic function depending on a real vector (or scalar) parameter k, then for every k

equation (54) has a finite number of solutions, but one can no longer assert that det �′′(s∗) �= 0
for every k! The analysis of oscillatory integrals involving external parameters strongly
depends on the number of parameters. We consider here only cases when the external vector
parameter k is one, two or three dimensional. The analysis crucially depends on the structure
of functions we consider and their symmetries. Our main focus is on the interaction phase
function φ
n(k,k′,k′′) defined by (54) and (55). This interaction phase function even for
generic ωn(k) has a special structure, and cannot be considered as a generic phase function
of (k,k′,k′′); it can be considered as a generic function of all variables only at non-diagonal
points.

3.2. Standard asymptotic approximations and normal forms

In this section we collect some standard asymptotic formulae used in our analysis of the
interaction integral (56).

One of the most important characteristics of a critical point s∗ of the phase �(s) is the
rank of the Hessian �′′(s∗) defined by (58). We assume that that �(s) is analytic near s∗,
∇�(s∗) = 0, and �(s∗) = 0. We also assume, without loss of generality, that the amplitude
A(s) is zero outside a small neighbourhood of the point s∗.

Non-degenerate points. A critical point s∗ is called non-degenerate if the rank of the Hessian
�′′(s∗) is dI . Choosing s∗ as a new origin, we can reduce the phase function by a linear
orthogonal change of variables to the canonical form

�(s) = µ1x2
1 + · · · + µdI x2

dI
+ O(|x |3) with µ1 �= 0, . . . , µdI �= 0, (59)

where µ j are the eigenvalues of the Hessian �′′(s∗). Following the notations given by [3]
we call such a point s∗ a critical point of the type A1. All the eigenvalues µ1, . . . , µdI of the
Hessian �′′(s∗) at this point are non-zero, and the following classical formula holds:

I (�) = bA1�
dI
2 A(s∗) + O(�

dI
2 +1), � → 0, (60)

bA1 = (2π)
dI
2√| det �′′(s∗)| exp

{
�(s∗) +

iπ

4
sign[�′′(s∗)]

}
,

det �′′(s∗) = 2dI µ1 · · ·µdI , sign{�′′(s∗)} =
dI∑

j=1

sign(µ j ).

(61)
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Now we turn to more complicated types of degenerate critical points of the phase function
when the rank of the Hessian �′′(s∗) is less than dI , and, equivalently, one or more of the
eigenvalues µ1, . . . , µdI are zero. To find the leading term of the asymptotic expansion of
the integral (56) in generic cases usually it is sufficient to know the leading polynomial of the
Taylor expansion of the phase function. Since ∇�(s∗) = 0 the expansion starts with quadratic
terms and when the quadratic part is degenerate the leading polynomial (the normal form) may
include cubic and higher powers of variables x j . We use the classification of degenerate critical
points given in the theory of singularities and use the standard notation from this theory, in
particular classes A p, D4 etc, as defined in [3].

Simplest degenerate points

Case 1. The rank of the Hessian is dI − 1, that is exactly one of the eigenvalues of the Hessian
vanishes, i.e. µdI = 0 and µ1 �= 0, . . . , µdI −1 �= 0. In this case we have a critical point s∗ of
the type A p, with integer p > 1. That means that there exists an analytic change of variables
s = s∗ + h(ξ) in the vicinity of the point s = s∗, ξ = 0 such that det h′(0) = 1 and �(s) can
be written in terms of the variable ξ = (ξ1, . . . , ξdI ) as

�(s) = µ1ξ
2
1 + · · · + µdI −1ξ

2
dI −1 + βξ

p+1
dI

, (62)

where the coefficient β equals 1/(p+1)! times (p+1)thderivative of �(s) along the direction of
the null-space of �′′(s∗). For a critical point of the class A p the leading term of the asymptotic
expansion takes the form (see, for example, [11, section 6.1])

I (�) = �
dI −1

2 + 1
p+1 bAp A(s∗) + O

(
�

dI −1
2 + 2

p+1
)
, (63)

where the coefficient bAp is determined by the phase � at s∗ by the following formula similar
to (61):

bAp = 2(2π)(n−1)/2�( 1
p+1 )

(p + 1)β
1

p+1

√
| det �′′

dI −1(s∗)|
exp

{
iπ

4
sign{�′′

dI −1(s∗)} + sign(β)
iπ

2 p + 2

}
, (64)

where

det �′′
dI −1(s∗) = 2dI −1

dI −1∏
j=1

µ j , sign{�′′
dI −1(s∗)} =

dI −1∑
j=1

sign(µ j ). (65)

Note that according to (63) the oscillatory index q0 of the critical point of type A p is

q0 = qAp = dI − 1

2
+

1

p + 1
. (66)

Formula (66) for the oscillatory index also holds for a non-degenerate point with p = 1.

Case 2. The rank of the Hessian is dI − 2. In this case the simplest generic critical point s∗
is of the type D4. Namely, in a neighbourhood of the point s∗ there exists an analytic change
of variables s = s∗ + h(ξ) such that det h′(0) = 1 and �(s) can be written in terms of the
variable ξ = (ξ1, . . . , ξdI ) as follows:

�(s) = µ1ξ
2
1 + · · · + µdI −2ξ

2
dI −2 + β1ξ

2
dI −1ξdI + β2ξ

3
dI

(67)

where all µ j �= 0, j = 1, . . . , dI − 2 and β1, β2 �= 0. At a point of class D4 the principal term
of the asymptotic expansion of I (�) is given by

I (�) = bD4�
q0 A(s∗) + O(�q0+ 1

3 ), q0 = (dI − 2)

2
+

2

3
(68)
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with

bD4 = (2π)(dI −1)/2

β
1/2
1 β

1/6
2

√
| det �′′

dI −2(s∗)|

× exp

{
iπ

4
sign{�′′

dI −2(s∗)}
}

2�( 1
6 )

3
cos

{
π

4
sign(β1β2) +

π

12

}
. (69)

When the rank of the Hessian is dI − 2 and one of β1, β2 vanishes or the expansion of �

with respect to ξdI −1, ξdI starts with the fourth or higher order terms, the singularities are even
more complicated, but the expansions in generic cases look similar to (63), (68). We give the
values of corresponding indices q0 in the tables in section 2, omitting explicit expressions for
the related coefficients b.

A general singularity can often be reduced to one of the standard cases based on the
following Morse lemma which is fundamental in the study of critical points (see [3, 4]).

Morse lemma. Let �(x1, . . . , xn) be an analytic phase function in a neighbourhood of the
origin. Assume that∇�(0) = 0, �(0) = 0 and the Hessian �′′(0)has rank n−k and is reduced
by a linear change of variables to the form µ1x2

1 + · · ·+µn−k x2
n−k , with µ1 �= 0, . . . , µn−k �= 0.

Then there exists an analytic change of variables x = h(ξ) in the neighbourhood of the origin
with a unit linear part at zero such that

�(x1, . . . , xn) = µ1ξ
2
1 + · · · + µn−kξ

2
n−k + f1(ξn−k+1, . . . , ξn) (70)

with ∇ f1(0) = 0, f ′′
1 (0) = 0. The change of variables can always be taken so that

f1(xn−k+1, . . . , xn) = �(0, . . . , 0, xn−k+1, . . . , xn). (71)

For the asymptotic expansions of oscillatory integrals with a general phase function
see [3, 4] and references therein. Our analysis shows that to find the leading terms of the
asymptotic expansions of (40) in generic situations when k is a one-, two-, or three-dimensional
variable it is sufficient to consider relatively simple singularities and the value of the index q0

can be found in these cases.

3.3. Tables of interaction indices

In general, there are two types of critical points of the interaction phase function φ
n(k,k′,k′′)
defined by (55): regular critical points and band-crossing points. A point (k′,k′′,k′′′),k′′′ =
k − k′ − k′′, is called band-crossing in one of three cases:

(i) ωn′(k′) = ωn′+1(k
′) or ωn′(k′) = ωn′−1(k

′);
(ii) ωn′′(k′′) = ωn′′+1(k

′′) or ωn′′(k′′) = ωn′′−1(k
′′);

(iii) ωn′′′(k′′′) = ωn′′′+1(k
′′) or ωn′′′(k′′′) = ωn′′′−1(k

′′′).

In this paper we do not consider band-crossing points, since their contribution to the
interaction integrals is smaller than the contribution of regular ones. A regular critical point
is not a band-crossing point, and at a regular critical point k′,k′′,k′′′ all the functions ωn̄′(k′),
ωn̄′′(k′′), ωn̄′′′(k′′′) are smooth and the GVM condition (38) is satisfied. Triplets (k,k′,k′′) for
which the FM rule (39) holds will be called FM points; regular critical points that satisfy (38)
and (39) are called GVM–FM points. We remind that in this paper we only describe interactions
of regular critical points which are also FM points. In other words, we consider here only the
points for which the entire selection rules system (38), (39) is satisfied. For a discussion of
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band-crossing points, in particular for the extension of the GVM rule to band-crossing points,
see [6, 7].

The analysis of the interaction phase function φ
n(k,k′,k′′) suggests one should consider
separately the classes of non-diagonal and diagonal points.

The class of diagonal points, in turn, is partitioned into the following three subclasses.

Subclass of single diagonal points: such that among three pairs (n′,k′; n′′,k′′),
(n′′,k′′; n′′′,k′′′) and (n′,k′; n′′′,k′′′) there is exactly one pair which is diagonal (positive
or negative).

Subclass of double diagonal points: such that among three pairs (n′,k′; n′′,k′′),
(n′′,k′′; n′′′,k′′′) and (n′,k′; n′′′,k′′′) there at least two pairs which are diagonal. Then,
evidently, we have n′ = n′′ = n′′′ and k′′ = ±k′, k′′′ = ±(∓)k′.

Subclass of zero diagonal points: k′ = 0, k′′ = k−k′′′, or k′′ = 0, k′ = k−k′′′, or k′′′ = 0,
k′ = k − k′′.

The subclass of double diagonal points, in turn, can be partitioned into the following three
subsubclasses.

Double positive diagonal points: n′ = n′′ = n′′′ and k′ = k′′ = k′′′ = k/3.

Double negative diagonal points: n′ = n′′ = n′′′ and k′ = k, k′′ = k, k′′′ = −k.

Mixed diagonal points: n′ = n′′ = n′′′ and k′ = k, k′′ = −k, k′′′ = k or k′ = −k, k′′ = k,
k′′′ = k.

Remark. Note that we fix the numeration of the three pairs, and the above classification
depends on the order of the three pairs (n′,k′; n′′,k′′), (n′′,k′′; n′′′,k′′′) and (n′,k′; n′′′,k′′′).
Change of variables k ′′′ ↔ k ′′ switches the subsubclasses of the double negative diagonal and
the mixed double diagonal points.

In what follows we give the final classification of the critical points if the interaction phase
functions φ
n(k,k′,k′′) defined by (55) are formed by generic dispersion relations ωn(k). The
details of their mathematical analysis are provided in section 3.

(1) Non-diagonal points. Possible types of critical points that may occur for generic dispersion
relations and the values of the index q0 in (37) are given in table 1.
Note that the set of points of a given type form a manifold of dimension dc that depends
on d . Points of classes A1 arise when the Hessian of φ
n(k,k′,k′′) with respect to k′,k′′
is non-degenerate. Points of class A2 and A3 arise when the Hessian is degenerate and its
null-space is one dimensional. The dimension dc of the set of critical points of every type
is given in the same table 1.

(2) Single diagonal points. Among positive diagonal points (to be concrete we take the
diagonal pair n′′ = n′′′, k′′ = k′′′) generically FM critical points exist only when ζ ′′ = ζ ′′′.
The index q0 in (37) takes the values listed in table 2.
Among negative diagonal points (to be concrete we take the diagonal pair n′′ = n′′′,
k′′ = −k′′′) generically FM critical points exist only when ζ ′′ = −ζ ′′′. The index q0

in (37) takes the values listed in table 3.
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(3) Double positive diagonal. In this case n′ = n′′ = n′′′ and k′ = k′′ = k′′′ = k/3. If

ζ1 = ζ2 = ζ3 = ζ0, (72)

there can be GVM points satisfying the FM rule (39) which reduce to the following
equation:

ωn(k) = 3ωn′(k/3). (73)

Equation (73) can have solutions, and any such a solution would evidently correspond
to the third harmonic generation. If equation (72) is not satisfied then generically there
will be no FM critical points. The values of q0 for the third harmonic generation and the
dimension dc of the corresponding set of critical points (k∗,k′∗,k′′∗,k′′′∗ ) are provided in
table 4.
Points of class D4 exist when the Hessian ω′′

n′′(
1
3k)has a one-dimensional null-space, points

of class Ỹ5 exist when the third derivative in the direction of the null-space vanishes.
(4) Double-negative diagonal. In this case n′ = n′′ = n′′′ and k′ = k, k′′ = k, k′′′ = −k and

the FM rule (39) takes the form

−ζ0ωn(k) + (ζ1 + ζ2 + ζ3)ωn′(k) = 0. (74)

The strongest interactions occur when n = n′ (see section 4.2 for details). In the case
n = n′, ζ2 = ζ3, generically there can be FM critical points if and only if ζ2 = ζ0 = −ζ1.
The corresponding critical points are not degenerate and q0 = d . In the case ζ2 = −ζ3,
generically there can also be FM points, but one has to consider two subcases. First, if
ζ2 = −ζ1, then (74) is satisfied if and only if ζ3 = ζ0, and the corresponding critical points
are not degenerate and q0 = d . Second, if ζ0 = ζ1 = ζ2 = −ζ3, then GVM and FM rules
are satisfied for every k and we may have higher degeneration for some k. The values of
q0 for this case are provided in table 5.
The first column in table 5 corresponds to k′ values for which the Hessian ω′′(k′) is non-
degenerate; the second and the third correspond to k′ values for which the Hessian ω′′(k′)
has a one-dimensional null-space; the fifth column corresponds to k′ values for which the
Hessian ω′′(k′) has a two-dimensional null-space.

(5) Double mixed diagonal. In this case n′ = n′′ = n′′′ and k′ = k, k′′ = −k, k′′′ = k. In the
case ζ2 = ζ3, and if n �= n′ then generically the FM rule cannot be satisfied. If n = n′, (74)
is equivalent to ζ0 = ζ2 = ζ3 = −ζ1. In this case φ′′ is generically non-degenerate and
q0 = d .

In the case ζ2 = −ζ3, there can be FM-GVM points, and one has to consider two subcases.
In the first subcase, ζ2 = −ζ1, then (74) is satisfied if and only if n = n′ and ζ3 = ζ0, that is
ζ0 = ζ3 = ζ1 = −ζ2. In this case φ′′ can be degenerate, i.e. det ω′′

n′(k) = 0. In the second
subcase, ζ2 = ζ3, that is ζ0 = ζ1 = ζ2 = −ζ3, generically if n �= n′ the FM rule when
generically cannot be satisfied. If under the same condition n = n′ then (74) is equivalent to
ζ0 = ζ2 = ζ3 = −ζ1. In this case φ′′ is generically non-degenerate and q0 = d . The values
of the indices of different points and the dimension of manifolds they form are presented in
table 5. For details see section 4.3.

3.4. Additional symmetries

The obtained results take into account only the inversion symmetry (24). If the dispersion
relations possess additional symmetries, all the studied interactions are still strong and have
the same values of the index q0. But the presence of additional symmetries may cause more
interactions to become strong. Let G = {γ1, . . . , γκ} be a finite group of those transformations
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γ of the quasimomenta space R
d that leave all the dispersion relations ωn(k) invariant,

i.e. ωn(γk) = ωn(k) for all n and k. We assume that G includes the group G0 corresponding
to the inversion symmetry (24). For example, suppose that the medium is symmetric under
reflection with respect to the plane x1 = 0. Then in addition to (24) the dispersion relations
will satisfy

ωn(k1, k2, k3) = ωn(−k1, k2, k3) for all n = 1, 2, . . . and k ∈ [−π, π]3. (75)

Formula (75) means that ωn(k) is invariant with respect to the transformation

R1(k1, k2, k3) = (−k1, k2, k3). (76)

In this case the group G consists of four elements

γ1 = 1, γ2 = −1, γ3 = R1, γ4 = −R1. (77)

If G is a group larger than the group G0 the set of ‘diagonal points’ defined by (45) consequently
will be larger. The case of non-diagonal points is completely similar to the case of non-diagonal
points considered in section 4.1 and table 1 remains the same. Now single G-diagonal points are
such points that among three pairs (n′,k′; n′′,k′′), (n′′,k′′; n′′′,k′′′) and (n′,k′; n′′′,k′′′) there
is exactly one pair which is diagonal in the sense of (45). If the group G contains κ elements
we have to consider κ different types of single diagonal points for different elements γ of the
group G compared with two types (positive and negative) for the group G0. Double G-diagonal
points are such that among three pairs (n′,k′; n′′,k′′), (n′′,k′′; n′′′,k′′′) and (n′,k′; n′′′,k′′′)
there are at least two pairs which are diagonal. Then, evidently, we have n′ = n′′ = n′′′ and
k′′ = γ1k

′, k′′′ = γ2k
′. Clearly, the third pair is also G-diagonal, k′′′ = γ2γ

−1
1 k′′. Now we

have κ2 different double diagonal cases (some of them are equivalent).
Zero G-diagonal points are the points where k′ = γk′ or k′′ = γk′′ or k′′′ = γk′′′ for

some γ in G.
The analysis of every diagonal, double diagonal and zero-diagonal case can be performed

along the lines provided in the following section. Though additional symmetries can produce
additional stronger interactions, we do not expect that there will be new types of singularities
not covered in the tables given in the previous section.

Remark. The functions ωn(k1, k2, k3) are 2π periodic with respect to k1, k2 and k3. We
everywhere understand equalities k′ = k′′ etc modulo (2πZ)3, that is components of k′ and k′′
may differ by a vector 2π(n1, n2, n3) where n1, n2, n3 are integers. An expression of the form
1
3k that occurs in a number of cases, for example in (73), denotes 3d different vectors obtained
by shifts of ki by 2π

3 . The equations for diagonal points (43), (44) we have considered in the
previous section and the phase matching equation (36) have integer coefficients, therefore they
are invariant modulo (2πZ)3 and the periodicity does not lead to additional diagonal points.
At the same time, when more general groups G are considered one has to take the periodicity
into account.

4. Mathematical analysis of GVM–FM points of the interaction phase function

This section is devoted to a rigorous and detailed mathematical analysis of the cubic interaction
phase φ
n(k,k′,k′′) defined by (55), we describe canonical types of singularities arising at
critical points and the corresponding values of the interaction indices q0. In the following
sections we explain the classification of GVM–FM points given in tables 1–5 and give additional
information on the points. We consider φ
n(k,k′,k′′) defined by (55) as a function of k′,k′′ that
depends on the parameter k in a neighbourhood of a point (k′∗,k′′∗,k′′′∗ ), k′′′∗ = k − k′∗ − k′′∗ .
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The point (k′∗,k′′∗,k′′′∗ ) may be non-diagonal, diagonal or double diagonal. Every different
‘diagonal’ case (non-diagonal, positive or negative diagonal, three double diagonal cases)
is considered in a separate section. In every section we consider all possible types of
degenerate GVM–FM points that a generic interaction phase φ
n(k,k′,k′′) may have in the
cases d = 1, 2, 3. In the diagonal and double diagonal cases the degeneracies depend on the
signs ζi , therefore every section contains several subcases.

The analysis in every subcase consists of the following steps.

(1) We determine the dimension of the interaction manifold of GVM–FM points (of the
diagonal type case under consideration) depending on d = 1, 2, 3; this manifold consists
of solutions k,k′,k′′ of the selection rules system (38), (39) with fixed 
n. When the
Hessian φ′′ = φ′′


n (k,k′
∗,k′′∗) of φ
n(k,k′,k′′) has non-zero determinant GVM–FM points

are non-degenerate or in the terminology of [3] are of type A1 and their contribution to
the interaction integral (34) can be found by the classical formula (60), (61), in this case
q0 = d .

(2) If the dimension of the above interaction manifold is greater than zero, that is the manifold
includes a curve of GVM–FM points, the determinant of the Hessian can robustly vanish
and degenerate points may exist. Therefore, we compute the Hessian (it is a 2d × 2d
symmetric matrix with a special structure that stems from the structure of the function
φ
n(k,k′,k′′)) and determine in every subcase the dimension of a submanifold of GVM–
FM points on which it degenerates.

(3) We determine if the dimension of the null-space of the Hessian can be greater than 1. At
the points where the dimension of the null-space of the Hessian is one, the degenerate
points are of type A p, p > 1, and their contribution to the interaction integral (34) can be
found using formula (63), (64), in this case q0 = d − 1

2 + 1
p+1 .

(4) If the dimension of the null-space of the Hessian φ′′

n is greater than 1 we apply the Morse

lemma to find the restriction of the phase function to the null-space of the Hessian and
determine possible types of the degenerate points. The contribution of the degenerate
points to the interaction integral (34) is given by the formula

I (�) = b�q0 A(s∗) + O(�q1), q1 > q0, (78)

similar to (63) but with different values of coefficient b and index q0. In the simplest case
the degenerate critical point has type D4 and (78) takes the form (68).

4.1. Degeneration of the Hessian at non-diagonal points

In this section we consider non-diagonal points as defined in section 2. Note that the selection
rules system (38), (39) imposes 2d + 1 constraints on 3d variables k,k′,k′′, and consequently
it determines a (d − 1)-dimensional manifold �(
n), d = 1, 2, 3, of points (k∗,k′∗,k′′∗). The
intersection of this manifold with a given 2d-hyperplane k∗ = k0 is empty for a generic k0,
and for some k0 it is a point or several points. We refer to the manifold �(
n) as a strong
interactions manifold.

Let us consider points (k∗,k′∗,k′′∗) on the strong interaction manifold �(
n) corresponding
to the interaction function φ
n(k,k′,k′′) defined by (55). We show that for generic dispersion
relations ωn(k) at non-diagonal points the null-space of the Hessian φ′′


n (k,k′,k′′) = φ′′ is at
most one dimensional, implying that such points are always of the class A p, p � 1, described
in section 3.2. The Hessian φ′′ is a 2d × 2d matrix of the second derivatives of φ
n(k,k′,k′′)
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with respect to k′,k′′ which can be written as follows:

φ′′ = −
(

ζ1ω
′′
n′(k′∗) + ζ3ω

′′
n′′′(k′′′∗ ) ζ3ω

′′
n′′′(k′′′∗ )

ζ3ω
′′
n′′′(k′′′∗ ) ζ2ω

′′
n′′(k′′∗) + ζ3ω

′′
n′′′(k′′′∗ )

)
,

k′′′
∗ = k∗ − k′

∗ − k′′
∗ .

(79)

To study methods of degeneration of the Hessian φ′′ we look at its null vectors (v′,v′′) satisfying
the following linear system of equations:

ζ1ω
′′
n′(k

′
∗)v

′ + ζ3ω
′′
n′′′(k

′′′
∗ )(v′ + v′′) = 0,

ζ2ω
′′
n′′(k

′′
∗)v

′′ + ζ3ω
′′
n′′′(k

′′′
∗ )(v′ + v′′) = 0.

(80)

In the linear system (80) the vector parameter (k′∗,k′′∗,k′′′∗ ) takes values on the (d − 1)-
dimensional manifold �(
n), d − 1 � 2. It is known (see, for example, [2]) that a generic
symmetric matrix depending on two scalar parameters does not have a two-dimensional null-
space. Notice that our matrix φ′′ defined by (79) is not generic, but it has a special structure
based on generic submatrices ω′′

n′(k′∗), ω′′
n′′(k′′∗), ω′′

n′′′(k′′′∗ ). To show that the system (80) has at
most a one-dimensional null-space we have to consider several cases.

Case 1. The matrices ω′′
n′′′(k′′′∗ ), ω′′

n′(k′∗) and ω′′
n′′(k′′∗) are invertible. Then, we rewrite (80) in

the form

v′ + ζ1ζ3ω
′′
n′(k′

∗)
−1ω′′

n′′′(k′′′
∗ )(v′ + v′′) = 0,

v′′ + ζ2ζ3ω
′′
n′′(k

′′
∗)

−1ω′′
n′′′(k

′′′
∗ )(v′ + v′′) = 0,

(81)

that after elementary algebraic manipulation yields

[ζ3ω
′′
n′′′(k

′′′
∗ )−1 + ζ1ω

′′
n′(k

′
∗)

−1 + ζ2ω
′′
n′′(k

′′
∗)

−1]ω′′
n′′′(k

′′′
∗ )(v′ + v′′) = 0. (82)

Hence, if the 2d-vector (v′,v′′) is in the null-space of φ′′, then d-vector w = ω′′
n′′′(k′′′)(v′ +v′′)

is in the null-space of the d × d symmetric matrix H1(k
′∗,k′′∗,k′′′∗ ), i.e.

H1(k
′
∗,k′′

∗,k′′′
∗ )w = 0,

H1(k
′
∗,k′′

∗,k′′′
∗ ) = ζ1ω

′′
n′(k

′
∗)

−1 + ζ2ω
′′
n′′(k

′′
∗)

−1 + ζ3ω
′′
n′′′(k

′′′
∗ )−1.

(83)

In the case of non-diagonal points (k′,k′′,k′′′) the matrix H1(k
′,k′′,k′′′) from (83) is the

sum of three independent matrices ω′′
n(k)−1, ω′′

n′′(k′′)−1, ω′′
n′′′(k′′′)−1. Consequently, we can

consider H1 as a generic symmetric matrix depending on no more than two parameters (since
d − 1 � 2). Hence, generically the dimension of the null-space of H1 cannot be greater than
one.

Let us show now that the null-space of φ′′ should also be one dimensional. Observe that
if the null-space of φ′′ is two dimensional, the null-space of H1 can be one dimensional only
when v′

1 + v′′
1 = v′

2 + v′′
2 for two linearly independent null-vectors

(v′
1,v′′

1 ) � (v′
2,v′′

2 ) (84)

of φ′′. In this case the existence of a double-zero eigenvalue in (80) implies two equations for
two pairs of vectors (v′

1,v′′
1 ) and (v′

2,v′′
2 ) with

v′
1 + v′′

1 = v′
2 + v′′

2 . (85)

From these equations we obtain the equations

ζ1ω
′′
n′(k

′)(v′
1 − v′

2) = 0, ζ2ω
′′
n′′(k

′′)(v′′
1 − v′′

2) = 0, v′
1 − v′

2 = v′′
2 − v′′

1 . (86)

Note that (84) and (85) imply that v′
1 − v′

2 = v′′
2 − v′′

1 �= 0, therefore both ω′′
n′(k′), ω′′

n′′(k′′) are
not invertible, and this is excluded in case 1.
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Case 2. Exactly one of ω′′
n′(k′), ω′′

n′′(k′′), ω′′
n′′′(k′′′) is not invertible. First, we suppose that

ω′′
n′(k′)v1 = 0 and that ω′′

n′(k′) possesses a one-dimensional null-space (the case of non-
invertible ω′′

n′′(k′′) is similar). From the first equation of (80) we get

v1 · ω′′
n′′′(k

′′′)(v′ + v′′) = 0. (87)

If we set now w = ω′′
n′′′(k′′′)(v′ + v′′) then in view of (87) w belongs to the space (v1)

⊥
orthogonal to v1. Let us introduce a symmetric matrix (ω′′

n′(k′))−1
⊥ which acts on (v1)

⊥ as the
inverse to the restriction of ω′′

n′(k′) to (v1)
⊥, and is zero on v1. Then the vector ζ1(ω

′′
n′(k′))−1

⊥ w
is well defined, belongs to (v1)

⊥ and, in view of (80), we have

H10w = 0, w · v1 = 0,

H10 = ζ1(ω
′′
n′(k

′))−1
⊥ + ζ2ω

′′
n′′(k

′′)−1 + ζ3ω
′′
n′′′(k

′′′)−1.
(88)

Note that the matrix H10 is a generic matrix as a function of k′′, consequently it has at most
a one-dimensional null-space. Then, as in the previous case 1, we conclude that φ has at
most a one-dimensional null-space too. Second, we suppose that ω′′

n′′′(k′′′) is degenerate, and
ω′′

n′′′(k′′′)v1 = 0. Now we proceed similarly to the case 1, but here we have to look at the
possibility that vectors ω′′

n′′′(k′′′)(v′ + v′′) form a one-dimensional set when v′ + v′′ is two
dimensional. The latter is possible only if there is a solution of (80) that satisfies

v′
1 + v′′

1 = v1 and ω′′
n′(k′

∗)v
′
1 = 0,

ω′′
n′′(k

′′
∗)v

′′
1 = 0, ω′′

n′′′(k
′′′
∗ )(v′

1 + v′′
1 ) = 0.

(89)

Therefore three determinants should equal zero at the same point on the two-dimensional
manifold, which is impossible in a generic situation. Therefore, in case 2, the null-space of
φ′′ is at most one dimensional.

Case 3. Two or more of det ω′′
n′(k′), det ω′′

n′′(k′′), det ω′′
n′′′(k′′′) are zero. This case can be robust

only when d = 3 and can hold for several points on the strong interaction manifold. As in the
case 2 we get that either v1 · ω′′

n′′′(k′′′)(v′ + v′′) = 0 or v2 · ω′′
n′′′(k′′′)(v′ + v′′) which cannot

hold for generic ω′′
n′′′(k′′′).

Conclusion. In the case of non-diagonal points the Hessian φ′′ generically cannot have two
zero eigenvalues. For the space dimension d = 2 the generic interaction function φ
n(k,k′,k′′)
may have several critical points of type A2 at critical points. When d = 3 a robust curve of
critical points of type A2 and several points of type A3 may exist.

4.2. Diagonal points of the interaction phase function

4.2.1. Hessian degeneration at positive diagonal points. Let us consider the diagonal
k′′ = k′′′ and introduce new variables η, ξ ∈ R

d as follows:

k′′ = ξ + η, k′ = k − 2ξ, k′′′ = k − k′ − k′′ = ξ − η,

ξ = 1
2 (k − k′), η = 1

2 (k′′ − k′′′) = 1
2 (2k′′ + k′ − k).

(90)

We will study the GVM rule and the Hessian degeneration in the new coordinates. The diagonal
k′′ = k′′′ takes the form η = 0, and the interaction function can be written as

φ
n(k,k′,k′′) = ζ0ωn(k) − ζ1ωn′(k − 2ξ) − ζ2ωn′′(ξ + η) − ζ3ωn′′′(ξ − η). (91)

Then the GVM rule takes the form

∇ξφ = 2ζ1ω
′
n′(k − 2ξ) − ζ2ω

′
n′′(ξ + η) − ζ3ω

′
n′′′(ξ − η),

∇ηφ = −ζ2ω
′
n′′(ξ + η) + ζ3ω

′
n′′′(ξ − η).

(92)



R62 Topical Review

The Hessian φ′′ with respect to ξ,η takes the form

φ′′ = −
( 4ζ1ω

′′
n′(k − 2ξ) + ζ2ω

′′
n′′(ξ + η) ζ2ω

′′
n′′(ξ + η) − ζ3ω

′′
n′′′(ξ − η)

+ζ3ω
′′
n′′′(ξ − η)

ζ2ω
′′
n′′(ξ + η) − ζ3ω

′′
n′′′(ξ − η) ζ2ω

′′
n′′(ξ + η) + ζ3ω

′′
n′′′(ξ − η)

)
. (93)

For n′′ = n′′′ and η = 0 we get

φ′′ = −
(

4ζ1ω
′′
n′(k − 2ξ) + (ζ2 + ζ3)ω

′′
n′′(ξ) (ζ2 − ζ3)ω

′′
n′′(ξ)

(ζ2 − ζ3)ω
′′
n′′(ξ) (ζ2 + ζ3)ω

′′
n′′(ξ)

)
. (94)

At the diagonal η = 0 we derive from (92) the GVM rule in the form

(ζ2 − ζ3)ω
′
n′′(ξ) = 0, −2ζ1ω

′
n′(k − 2ξ) + (ζ2 + ζ3)ω

′
n′′(ξ) = 0. (95)

We have two subcases ζ2 − ζ3 = 0 and ζ2 + ζ3 = 0.

Case 1. ζ2 − ζ3 = 0. Then (94) and (95) take the form

φ′′ = −
(

4ζ1ω
′′
n′(k − 2ξ) + 2ζ2ω

′′
n′′(ξ) 0

0 2ζ2ω
′′
n′′(ξ)

)
, (96)

−2ζ1ω
′
n′(k − 2ξ) + 2ζ2ω

′
n′′(ξ) = 0. (97)

Note that in this case the GVM rule implies d equations on 2d variables k, ξ, and one more
equation is imposed by the FM rule. Hence, there will be a (d − 1)-dimensional set of points
satisfying the selection rules system. In view of (96) the determinant of the Hessian φ′′ is zero
if and only if

det[4ζ1ω
′′
n′(k − 2ξ) + 2ζ2ω

′′
n′′(ξ)] det[ω′′

n′′(ξ)] = 0. (98)

when d � 2 this equation together with the GVM and FM rules yields generically a (d − 2)-
parametric family of solutions corresponding to degenerate critical points. Now we determine
if the null-space of φ′′ can be two dimensional. Note that a zero eigenvalue of φ′′ given by (96)
corresponds to solutions (u, v) of a system Mu + Nu = 0, Nv = 0 with M = 2ζ2ω

′′
n′′(k−2ξ),

N = 2ζ2ω
′′
n′′(ξ). The two-dimensional null-space of the system can be formed in two ways:

either as a two-dimensional null-space of N or M + N or as a sum of one-dimensional null-
spaces of N or M+N . The first alternative is not robust when d � 3. The second alternative can
be realized when both det N = 0 and det(M + N) = 0. This case is robust in a two-parameter
family, therefore it can be realized when d = 3. Therefore, for d = 3, several robust points
of type D4 may exist with q0 = 8

3 and the leading term of the asymptotic expansion given
by (68).

If the null-space of the Hessian φ′′ is one dimensional, we introduce the new variables
p,m

k′′ + k′′′ = p, k′′ − k′′′ = m, k′ = k − p (99)

yielding

φ
n(k,k′,k′′) = ζ0ωn(k) − ζ1ωn′(k − p) − ζ2ωn′′( 1
2 (p + m)) − ζ2ωn′′( 1

2 (p − m)). (100)

Observe that the interaction phase function is even in m. The corresponding Hessian φ′′ in
p,m variables at m = 0 takes the form

φ′′ = −
(

ζ1ω
′′
n′(k − p) + 1

2ζ2ω
′′
n′′(

1
2p) 0

0 1
2ζ2ω

′′
n′′(

1
2p)

)
. (101)

If det(ω′′
n′′(

1
2p)) = 0 there is a zero eigenvector of φ′′ of the form (0,m′) with ω′′

n′′(
1
2p)m′ = 0,

that is the null-space of φ′′ lies in the m space. According to (100) the restriction of
the phase φ to the line along the null-space direction with p fixed is even. Hence, the
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corresponding critical points are of the type A3 or A5. Points of the type A3 form a manifold
of the dimension dc = d − 2, d = 2, 3. If d = 3 several points may have type A5. If
det[4ζ1ω

′′
n′(k − 2ξ) + 2ζ2ω

′′
n′′(ξ)] = 0 the points in generic cases may have types A2 or A3. In

this case points of the type A2 form a manifold of dimension dc = d − 2, d = 2, 3, and there
can be several points of the type A3 if d = 3. The related interaction indices for all considered
cases are presented in table 2.

Case 2. ζ2 + ζ3 = 0. The GVM rule (95) then has the form

ω′
n′′(ξ) = 0, ω′

n′(k − 2ξ) = 0. (102)

If n′′ �= n′ or k − 2ξ �= k (that is the point is not double diagonal) the relations (102) yield
2d equations for 2d variables and generically have a finite set of solutions. The FM rule
generically cannot be satisfied. Hence, such points do not yield stronger interactions.

4.2.2. Hessian degeneration at negative diagonal points. Consider now the negative diagonal
n′′ = n′′′, k′′ = −k′′′. Note that on this diagonal k′ = k. It is convenient to introduce new
variables ξ,η ∈ R

d by (90). In the new variables the negative diagonal takes the form ξ = 0,
and the interaction function φ
n(k,k′,k′′)) is given by (91). Consequently, the GVM rule takes
the form (92), and the Hessian φ′′ with respect to ξ,η is given by (93). At the diagonal ξ = 0,
n′′ = n′′′ we get from (92) and ω′

n′′(−η) = −ω′
n′′(η), which follows from (24), that the GVM

rule takes the form

−2ζ1ω
′
n′(k) + (ζ2 − ζ3)ω

′
n′′(η) = 0,

(ζ2 + ζ3)ω
′
n′′(η) = 0.

(103)

Using the equality ω′′
n′′′(−η) = ω′′

n′′′(η), which follows from (24) we obtain from (93) at the
negative diagonal

φ′′ = −
(

4ζ1ω
′′
n′(k) + (ζ2 + ζ3)ω

′′
n′′(η) (ζ2 − ζ3)ω

′′
n′′(η)

(ζ2 − ζ3)ω
′′
n′′(η) (ζ2 + ζ3)ω

′′
n′′(η)

)
. (104)

We have to consider here two subcases ζ2 − ζ3 = 0 and ζ2 + ζ3 = 0.

Case 1. ζ2 − ζ3 = 0. Then (103) takes the form

−2ζ1ω
′
n′(k) = 0, 2ζ2ω

′
n′′(η) = 0. (105)

If n′′ �= n′ then (105) yields 2d equations for 2d variables and has a finite set of solutions. If
n′′ = n′, k �= η we still have 2d equations for 2d variables. In both cases the FM rule cannot
be generically satisfied.

Case 2. ζ2 + ζ3 = 0. Then (103) takes the form

−2ζ1ω
′
n′(k) + 2ζ2ω

′
n′′(η) = 0. (106)

In this case GVM implies d equations on 2d variables k,η, and one more equation is imposed
by the FM rule, which takes the form −ζ0ωn(k) + ζ1ωn′(k) = 0 and has solutions only if
ζ0 = ζ1. If n = n′ the FM rule is satisfied for any k and when n �= n′ the set of GVM–FM
points has dimension dc = d − 1. The Hessian (104) takes the form

φ′′ = −
(

4ζ1ω
′′
n′(k) 2ζ2ω

′′
n′′(η)

2ζ2ω
′′
n′′(η) 0

)
. (107)

The determinant of φ′′ is the zero if and only if

det(ω′′
n′′(η)) = 0. (108)
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Since η �= 0 (the so-called double zero-diagonal case η = 0 when k′′ = k′′′ = 0 is
considered separately) the dependence on η is generic and if n �= n′ we have a (d − 2)-
dimensional set of points of the type A2, and for d = 3 we may have several points of the type
A3. If n = n′ we may have a (d − 1)-dimensional set of points of the type A2, a (d − 2)-
dimensional set of points of the type A3, and for d = 3 we may have several points of the
type A4.

To determine whether the dimension of the null-space of φ′′ can be greater than one we
note the following. A generic two-parameter family of symmetric matrices ω′′

n′′(η) cannot
have two zero eigenvalues. Let 2d vector 
u = (u, v) be in the null-space of φ′′, φ′′ 
u = 0. We
denote M = 4ζ1ω

′′
n′(k), N = ζ2ω

′′
n′′(η), the matrices M and N are self-adjoint. The equation

φ′′ 
u = 0 is equivalent to Mu + Nv = 0, Nu = 0. Since det N = 0 we have Nv0 = 0. Then
u = 0, v = v0 gives one solution of the system. The criterion of solvability of the equation
Mv0 + Nv = 0 is the condition Mv0 · v0 = 0. If it is satisfied we get a solution v1 of the
equation Mv0 + Nv1 = 0 and a second solution u = v0, v = v1 of the system. Thus to get
two non-zero solutions of the matrices M, N we have to satisfy the following two equations:

Nv0 = 0, Mv0 · v0 = 0. (109)

The first has a non-zero solution when det N = 0 and the second condition Mv0 · v0 = 0 is a
linear equation on the entries of M . Therefore, when n �= n′ and d = 3 we may robustly have
a two-dimensional null-space of φ′′ at several GVM–FM points, they are generically points
of type D4. If n = n′ and d = 2 we may also have several GVM–FM points of type D4. If
n = n′ and d = 3 then the set of points of type D4 may be one dimensional. The indices are
collected in table 3, where we give the values of indices q0 and dimension dc that correspond
to n = n′.

4.3. Double diagonal points of the interaction phase function

Now we consider double diagonal points for which n′ = n′′ = n′′′ and k′′ = ±k′′′,
k′′′ = ±(∓)k′; different signs give rise to four cases. Since φ
n(k,k′,k′′) is invariant under
exchange of n̄′,k′ and n̄′′,k′′ it is sufficient to consider only one of two possible mixed
cases, therefore we consider three combinations of signs: double positive, double negative
and negative–positive.

Note that the integral (34) with n′ = n′′ = n′′′ is preserved when k′ and k′′ are exchanged,
as well as when k′ and k′′′ are exchanged or k′′ and k′′′ are exchanged. Therefore to classify all
the cases it is sufficient to consider the above pairs (k′′,k′′′) and (k′,k′′′); the pairs (k′′,k′′′)
and (k′,k′′), as well as (k′,k′′) and (k′,k′′′) are similar.

4.3.1. Double positive diagonal. We consider here points (k′,k′′,k′′′) on the intersection
of the diagonals k′′ = k′′′ and k′ = k′′′. In this case 2k′′ = k − k′, 3k′′ = k and we
again use the change of coordinates (90) where at the double positive diagonal point we get
ξ = 1

2 (k − k′) = 1
3k, η = 0.

Case 1. ζ2 − ζ3 = 0. The formulae (95) and (94) take respectively the form

(2ζ2 − 2ζ1)ω
′
n′(

1
3k) = 0, (110)

φ′′ = −
(

(4ζ1 + 2ζ2)ω
′′
n′(

1
3k) 0

0 2ζ2ω
′′
n′(

1
3k)

)
. (111)

Subcase 1.1. ζ2 − ζ1 �= 0. Here we have several solutions k∗ of (110) but the FM rule is not
generically satisfied.
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Subcase 1.2 (third harmonic generation). ζ2 − ζ1 = 0. In this case (110) holds for every k

and φ′′ is degenerate if and only if ω′′
n′(

1
3k) is. Here the FM rule takes the form

3ζ1ωn′( 1
3k) = ζ0ωn(k), (112)

and is satisfied only if ζ1 = ζ0. This case corresponds to the third harmonic generation.

The Hessian φ′′ is block diagonal, so if det ω′′
n′(k/3) = 0 we have a two-dimensional

null-space. The third-order Taylor polynomial f(3) of the interaction function restricted to
the null-space can be written in appropriately chosen coordinates as in (121) (the analysis is
similar to the case of the double negative diagonal and uses a modification of (122)) as

f(3)(p1, m1) = 1
24ω′′′

n1(k)[5 p3
1 + 3 p1m2

1], ω′′′
n1(k) = ∂3ωn/∂p3

1. (113)

The corresponding critical point belongs to the class D4. Therefore, we have a point of class
D4 when d = 2 and a curve of points of class D4 when d = 3. It is possible for d = 3 that
ω′′′

n1(k) = 0 at some point of the curve. In this case the principal part of the interaction function
restricted to the null-space is given by a fourth-order polynomial of the form

2

4!24
ω′′′′

n1(k)(3 p2
1 + m2

1)
2, (114)

and the corresponding critical point belongs to the class Ỹ5 = T̃2,5,5 with the normal form
(p2 + m2)2 + ap5 (see [3, p 273]); the index q0 = 5

2 (see [4, p 185]).

Case 2. When (ζ2 + ζ3) = 0 (95) takes the form

ω′
n′(

1
3k) = 0. (115)

Equation (102) includes d equations for d variables and has a finite set of solutions. The FM
rule cannot be generically satisfied. Such points do not contribute to stronger interactions.

Remark. As was mentioned in section 3.4, we identify vectors k′,k′′ etc modulo (2πZ)3,
therefore an expression of the form 1

3k that occurs in (73), (110), (111), (115) denotes one of
3d different vectors obtained by shifts of ki by 2π

3 . For example, in (111) φ′′ is considered
separately at every point that represents 1

3k, a solution of (112) exists if one of the vectors 1
3k

solves it.

4.3.2. Double negative diagonal. We now consider points on the intersection of the negative
diagonals k′′ = −k′′′ and k′ = −k′′′. In this case k′′ = −k + k′ + k′′, k′ = −k + k′ + k′′
that is k = k′ = k′′ = −k′′′ and we again use the change of coordinates (90) where at the
critical point we get ξ = 0, η = 1

2 (2k′′ + k′ − k) = k. The FM rule takes the form (74). The
second differential (the Hessian) φ′′ with respect to ξ,η is given by (93) and for ξ = 0 using
that by (24) ω′′

n′(−η) = ω′′
n′(η) we obtain

φ′′ = −
(

(4ζ1 + ζ2 + ζ3)ω
′′
n′(k) (ζ2 − ζ3)ω

′′
n′(k)

(ζ2 − ζ3)ω
′′
n′(k) (ζ2 + ζ3)ω

′′
n′(k)

)
. (116)

At the diagonal ξ = 0 we get from (92) using that by (24) ω′
n′(−η) = −ω′

n′(η)

−2ζ1ω
′
n′(k) + (ζ2 − ζ3)ω

′
n′(k) = 0, (ζ2 + ζ3)ω

′
n′(k) = 0. (117)

We have two subcases ζ2 − ζ3 = 0 and ζ2 + ζ3 = 0.



R66 Topical Review

Case 1. When ζ2 − ζ3 = 0 the GVM rule (103) takes the form

ω′
n′(k) = 0. (118)

This system includes d equations for d variables and has a finite set of solutions; the additional
FM rule (74) cannot be generically satisfied when n �= n′. When n = n′, (74) is satisfied if
and only if ζ2 = ζ0 = −ζ1. The critical point is not degenerate.

Case 2. When ζ2 + ζ3 = 0 (103) takes the form

(ζ2 − ζ1)ω
′
n′(k) = 0. (119)

When ζ2 = −ζ1 the GVM rule implies d equations on d variables k, the FM equation (74)
generically cannot be satisfied when n �= n′. When n = n′, (74) is satisfied if and only if
ζ3 = ζ0. In a generic case det(ω′′

n′′(k)) �= 0, the Hessian φ′′ is non-degenerate and we have a
classical asymptotic given by (60) with q0 = d .

When ζ2 = ζ1 the GVM rule is always satisfied, ζ1 = ζ2 = −ζ3 and (74) holds only when
ζ0 = ζ1 = ζ2 = −ζ3. We have two different subcases n �= n′ and n = n′. In the first subcase
the FM rule determines a (d − 1)-dimensional set of GVM–FM points and in the second all
double diagonal points are GVM–FM points, that is the set is d dimensional; after taking this
into account, the analysis is quite similar in both cases. Now we consider the case n = n′,
obviously (47) holds and φ
n(k,k′,k′′) takes the form (50). According to (104) the Hessian is
given by

φ′′ = −
(

4ζ1ω
′′
n′(k) 2ζ2ω

′′
n′(k)

2ζ2ω
′′
n′(k) 0

)
. (120)

To study the case when the Hessian φ′′ is degenerate, that is det(ω′′
n(k)) = 0, we introduce

new variables

k′ + k′′ − 2k = p, k′ − k′′ = m. (121)

(Note that the determinant of this linear substitution equals 2d , and this factor has to be taken
into account if the oscillatory integral is evaluated in the (p,m) coordinates.) For simplicity
we set ζ0 = 1 and using (24) we write

φ
n(k,k′,k′′) = ωn(k) − ωn(k + 1
2 (p + m)) − ωn(k + 1

2 (p − m)) + ωn(k + p). (122)

This function is even with respect to m. The axes of the (p,m) coordinate system are chosen
in the following way. If the Hessian at k = k∗ has a zero eigenvalue, we take the axes p1, m1

in the direction of the null-space ω′′
n(k) and axes p2, m2 (and p3, m3 for d = 3) in the direction

of a vector corresponding to the non-zero eigenvalue λ2 (respectively λ3 for d = 3) of the
Hessian ω′′

n′(k∗). For d = 3 we get at a GVM–FM point

−φ
n(k,k′,k′′) = λ2

4
[m2

2 − p2
2] +

λ3

4
[m2

3 − p2
3] + f (p,m) (123)

where f (p,m) has third-order zero at the origin and is even with respect to m. According
to the Morse lemma the class of the critical point is determined by the function f (p1, m1)

obtained by setting p2 = m2 = p3 = m3 = 0 in (122). The third-order Taylor polynomial
f(3) of this function is of class D4:

f(3)(p1, m1) = 1
8ω′′′

n1(k)[p1m2
1 − p3

1], ω′′′
n1(k) = ∂3ωn/∂p3

1. (124)

If ω′′′
n1(k) �= 0, an invertible change of variables p1, m1 with a unit differential at zero reduces

f (p1, m1) to f(3)(p1, m1), we obtain the phase function of the type D4, and the leading term
of asymptotic expansion is given by formula (68). Note that the equation det ω′′

n′(k) = 0
determines a (d − 1)-dimensional manifold of degenerate critical points. When ω′′′

n1(k) = 0,
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the function f (p1, m1) has fourth-orderzero at the origin and can be reduced to its fourth-order
Taylor polynomial

f(4)(p1, m1) = 1
24ω′′′′

n1(k)[ 3
4 p2

1m2
1 + 1

8 m4
1 − 7

8 p4
1], (125)

it belongs to the singularity class denoted by T2,4,4 (see [3, p 260]). The oscillatory integral
has asymptotic behaviour of order �q0−1 with q0 = 5

2 (see [4, p 185]). The manifold of such
points, if non-empty, has dimension d − 2 for d = 2, 3. If d = 3 the fourth-order coefficient
ω′′′′

n1(k) = ∂4ωn/∂p4
1 can vanish at several points and f (p1, m1) has zero of the fifth order, its

singularity type is then N16 (see [3, p 262]). The oscillatory integral has asymptotic behaviour
of order �q0−1 with q0 = 2 + 2

5 (see theorems 6.4, 6.5 in [4]). The second possibility that
may robustly occur in the three-dimensional case d = 3 is the existence of several points
where the Hessian ω′′

n(k) has a two-dimensional null-space. In this case the Morse lemma
reduces the singularity of the phase to a function f (p1, m1, p2, m2) of four variables that has
a third-order zero at the origin (we call such a function 4-cubic in table 5) and in the generic
case the oscillatory integral has asymptotic behaviour of order �q0−1 with q0 = 1+ 4

3 according
to a theorem given by Varchenko (see theorem 6.4 in [4]).

4.3.3. Mixed double (positive and negative) diagonal. We consider now points (k′,k′′,k′′′)
on the intersection of the negative diagonal k′′ = −k′′′ and the diagonal k′ = k′′′. This case
is similar to the case of a double-negative diagonal, therefore we discus it more briefly. In this
case by (36) k = k′, k′′ = −k and we again use the change of coordinates (90) where at the
double diagonal point we get ξ = 0, η = 1

2 (2k′′ + k′ − k) = −k. The FM rule, after taking
into account (24), again takes the form (74).

Since by (24) ω′
n′(−η) = −ω′

n′(η), the GVM rule (92) takes the form

2ζ1ω
′
n′(k) + (ζ2 − ζ3)ω

′
n′(k) = 0, (ζ2 + ζ3)ω

′
n′(k) = 0. (126)

The Hessian φ′′ with respect to ξ,η is given by (93) and using the equality ω′′
n′(−η) = ω′′

n′(η),
which follows from (24), we see that φ′′ satisfies the relation (116).

We have two subcases ζ2 − ζ3 = 0 and ζ2 + ζ3 = 0.

Case 1. ζ2 − ζ3 = 0. The GVM rule (103) takes the form

ω′
n′(k) = 0. (127)

It yields d equations for d variables and has a finite set of solutions. If n �= n′ the FM rule
generically cannot be satisfied. If n = n′, then (74) is equivalent to ζ0 = ζ2 = ζ3 = −ζ1. In
this case φ′′ is generically non-degenerate and q0 = d .

Case 2. ζ2 + ζ3 = 0. The relations (104) and (103) take, respectively, the form

φ′′ = −
(

4ζ1ω
′′
n′(k) 2ζ2ω

′′
n′(k)

2ζ2ω
′′
n′(k) 0

)
, (ζ1 + ζ2)ω

′
n′(k) = 0. (128)

If ζ1 = ζ2 the GVM rule ω′
n′(k) = 0 gives d equations for d variables and has a finite set of

solutions; the FM rule when n �= n′ cannot be generically satisfied. When n = n′, (74) is
equivalent to ζ0 = ζ2 = ζ3 = −ζ1. In the latter case φ′′ is generically non-degenerate and
q0 = d .

If ζ1 = −ζ2 the GVM rule always holds. If n �= n′, then FM rule determines a d − 1 set
of GVM–FM points. If n = n′, (74) is equivalent to ζ0 = ζ3, that is ζ0 = ζ3 = ζ1 = −ζ2.
Clearly, in this case (49) holds. In this case φ′′ can be degenerate if det ω′′

n′(k) = 0, the analysis
of all possibilities is similar to the double negative diagonal case.
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4.3.4. Zero-diagonal GVM–FM points. There is one more case when the symmetries restrict
the generic variation of ωn′(k′), namely near k′ = 0. Here we study the structure of the
interaction phase function in the vicinity of such points. We consider here zero-diagonal
points such that k′ = −k′ = 0. In this case k′′′ = k − k′′. At such a point thanks to (24)

∇ωn′(0) = 0 (129)

and the GVM rule takes the form

∇ωn′′′(k − k′′) = 0, ∇ωn′′(k′′) = 0. (130)

These two conditions together with the FM rule are not generically satisfied in a non-diagonal
case. It can have a solution when n′′′ = n′′ and one of the following conditions holds:

(i) k − k′′ = k′′ (zero-positive diagonal) that is k′′ = k′′′ = 1
2k;

(ii) k − k′′ = −k′′ (zero-negative diagonal) that is k = k′ = 0, k′′′ = −k′′;
(iii) k′′ = 0 (zero-zero diagonal), k = k′.

In cases (i), (ii) the GVM rule takes the form

∇ωn′′(k′′) = 0 (131)

yielding several solutions k′′ at the critical points of ωn′′(k′′).

(1) In the case of a zero-positive diagonal, the FM rule after taking into account (24), takes
the form

ζ0ωn(k) − ζ1ωn′(0) − ζ2ωn′′( 1
2 k) − ζ3ωn′′( 1

2k) = 0. (132)

Since k takes several values determined by the GVM rule, the FM rule is not generically
satisfied when k �= 0. For k = 0 we get the zero-negative diagonal case that is considered
in what follows.

(2) In the case of the zero-negative diagonal the FM rule

ζ0ωn(0) − ζ1ωn′(0) − ζ2ωn′′(k′′) − ζ3ωn′′(k′′) = 0 (133)

is generically satisfied only when n′ = n, ζ0 = ζ1, ζ2 = −ζ3. In particular, it is satisfied
when k = k′ = k′′ = k′′′ = 0, in the latter case the sign variables ζi to enforce the FM
rule should satisfy ζ0 = ζ2, ζ1 = −ζ3 or ζ0 = ζ3, ζ1 = −ζ2. The Hessian is generically
non-degenerate and q0 = d .

(3) In the case of the zero–zero diagonal the FM rule takes the form

ζ0ωn(k) − ζ1ωn′(k) − ζ2ωn′′(0) − ζ3ωn′′(0) = 0 (134)

and is satisfied when n = n′, ζ0 = ζ1, ζ2 = −ζ3 for every k. The GVM rule ∇ωn′(k) = 0
selects several k. The Hessian generically is non-degenerate and q0 = d .
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